Vint-stroy.ru

Винтовые сваи ООО "Рекострой"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология Гиперпрессованного Кирпича

Технология Гиперпрессованного Кирпича

Технология гиперпрессованного кирпича

Технология гиперпрессованного кирпича — это достаточно простой, в сравнении с другими, способ производства строительных материалов. Являясь более экологичной и низкозатратной, данная технология имеет большой потенциал в перспективе потеснить известные способы производства. В данной статье проведен сравнительный анализ свойств гиперпрессованных изделий на известняковом отсеве, изготовленных с различным содержанием портландцемента при разных давлениях прессования. Твердение образцов осуществлялось при разных режимах в камере тепловлажностной обработки. Выбран наиболее оптимальный состав, а также разработана технологическая линия для производства гиперпрессованного кирпича.

На рассматриваемом действующем предприятии по производству силикатного кирпича при добыче известняка для производства извести накапливается большое количество отходов дробления с размерами частиц менее 5 мм, которые не используются в основном производстве. В связи с чем существует проблема утилизации данного вида отходов. Одним из направлений развития отрасли строительных материалов является производство гиперпрессованного кирпича, в качестве заполнителя в котором может применяться известняковый отсев. По заявке данного предприятия разрабатывалась технология производства гиперпрессованного кирпича и других изделий методом сверхвысоких усилий.

Материалы и методы применяемые в технологии

В качестве заполнителя гиперпрессованных изделий использовался песок из отсева дробления известняка со следующими испытанными характеристиками, определенными по ГОСТ 8735-88 «Песок для строительных работ. Методы испытаний»:

  • насыпная плотность нас = 1430 кг/м3;
  • истинная плотность ист = 2660 кг/м3;
  • зерновой состав песка приведен на рисунке 1. Зерна с размером 5 мм отсутствовали.

Mк = 2,31. Так как модуль крупности известнякового песка находится в пределах 2,0<Мк<2,5, то можно сделать вывод о том, что он относится к категории песков со средней крупностью.

Зерновой состав известнякового песка

Рис. 1. Зерновой состав известнякового песка

В качестве вяжущего гиперпрессованных изделий применялся портландцемент со следующими характеристиками, определенными по ГОСТ 30744-2001 «Цементы. Методы испытаний с использованием полифракционного песка» в условиях нормального твердения на 28 сутки:

  • тесто нормальной густоты ТНГ — 24,5%;
  • начало схватывания — 2 с 10 мин;
  • конец схватывания — 4 ч;
  • среднее значение прочности при сжатии образцов нормального твердения в возрасте 28 суток — 39,7 МПа;
  • остаток на сите 008 — 8,4%.

Таким образом, цемент используемый в настоящей технологии производства гиперпрессованного кирпича соответствует минимальной классу ЦЕМ II А-Ш 32,5 Н по требованиям ГОСТ 31108-2003.

В условиях современного производства гиперпрессованного кирпича целесообразно применение тепло-влажностной обработки изделий. Для исследования свойств гиперпрессованных кирпичей формовались образцы-цилиндры диаметром 5 см, высотой 5 см при удельных давлениях прессования 60-100 МПа и процентном содержании цемента от 10 до 20%. Твердение образцов осуществлялось при тепло-влажностной обработке в камере ТВО по режиму 1-6-1 и 2-4-2 при температуре 60 и 80°С.

Результаты применения данной технологии производства кирпича

При помощи математического моделирования построены зависимости прочности при сжатии гиперпрессованных образцов от удельного давления прессования и содержания цемента. Полученные зависимости прочности при сжатии образцов твердевших по режиму 1-6-1 при температуре 60°С и 80°С представлены на рисунках 2 и 3 соответственно.

Рис. 2. Зависимость прочности при сжатии гиперпрессованных образцов от удельного давления прессования и количества цемента после камеры ТВО (1-6-1 при 60°С)

Обе зависимости в данной технологии гиперпрессованного кирпича показывают, что наибольшее влияние на прочность полученных образцов оказывает содержание вяжущего. При этом влияние температуры изотермической выдержки наиболее выражено при удельном давлении прессования 100 МПа и содержании портландцемента 20%, что характеризуется пиковой зависимостью прочности при температуре обработки 80°С.

Рис. 3. Зависимость прочности гиперпрессованных изделий от удельного усилия прессования и количества цемента после камеры ТВО (1-6-1 при 80°С)

Более «мягкий» режим камеры ТВО с температурой 60°С позволяет достичь большей прочности при сжатии при удельных давлениях прессования 60-80 МПа, которая составляет 22-30 МПа и превышает на 5-10% прочность аналогичных образцов твердевших при температуре 80°С.

Зависимости характеризующие прочность образцов твердевших по режиму 2-4-2 при температурах 60°С и 80°С представленные на рисунках 4 и 5 соответственно имеют различный характер математической модели.

Рис. 4. Зависимость прочности гиперпрессованных образцов от удельного давления прессования и количества вяжущего после камеры ТВО (2-4-2 при 60°С)

При температуре 60°С в рамках технологии гиперпрессованного кирпича наблюдается сохранение прочности при сжатии на одинаковом уровне при расходе цемента 15%, 20% и удельном давлении прессования 60 МПа прирост прочности составляет около 5%. При содержании цемента 10% прочность составляет 20-22 МПа, что на 10-25% ниже прочности аналогичных составов с расходом цемента 15%.

Читайте так же:
Стандартные испытания керамического кирпича

Рис. 5. Зависимость прочности прессованных изделий при сжатии от удельного давления прессования и количества цемента после камеры ТВО (2-4-2 при 80°С)

Тепло-влажностная обработка при 80°С показывает линейную зависимость прочности от количества вяжущего, при этом наблюдается незначительное снижение прочности образцов заформованных с удельным давлением прессования 80 МПа.

Таким образом, можно сделать вывод, что 6-ти часовая изотермическая выдержка позволяет получить более прочные образцы. При этом увеличение температуры ТВО с 60°С до 80°С не дает значительного прироста прочности.

На основании полученных результатов для разработки оптимальной технологии гиперпрессованного кирпича выбирается состав заформованный при удельном давлении прессования 60 МПа с содержанием портландцемента 10%, режим тепло-влажностной обработки 1-6-1 60°С.

Технологическая линии производства гиперпрессованного кирпича

Разработка технологической линии для производства гиперпрессованного кирпича осуществлялась исходя из характеристик пресса, ранее приобретенного предприятием, по заявке которого выполнялась настоящая работа.

Данный гиперпресс имел следующие характеристики:

  • максимальная глубина заполнения — 55-85 мм;
  • усилие прессования — 3000 т;
  • максимальное усилие выталкивания — 2 кН;
  • производительность — 10 шт./мин.

Режим работы проектируемого цеха 2 смены по 8 часов. Суточную производительность находим по формуле:

Псут = 10*60*16 = 9600 шт./сут.

В цеху устанавливается один пресс, на основе его производительности выполняется подбор остального технологического оборудования.

Для подготовки смеси использовался бетоносмеситель принудительного действия с вертикально расположенным валом вращения, который имел следующие характеристики:

  • емкость смесителя — 320 л;
  • готовая смесь — 250 л;
  • время перемешивания — 1,5 мин;
  • напряжение питающей электросети — 380 В;
  • энергопотребление — 4,0 кВт/ч;
  • габаритные размеры — 1400х1350х1320 мм;
  • масса — 380 кг.

Также в технологической линии присутствовал раздаточный бункер с ленточным конвейером. Бункер будет загружаться отсевом известняка один раз в смену. Суточная потребность цеха в отсеве: 28,14 м3 . Требуемый объем бункера V = 28,14/2 = 14,07 м3.

Известняковый песок доставляется на закрытый склад автомобильным транспортом. Из склада отсев фронтальным погрузчиком загружается в раздаточный бункер. Далее нужное количество отсева, отмеренное тензодатчиками, поступает на ленточный конвейер, который подает его в бетоносмеситель принудительного типа.

Портландцемент доставляется автоцементовозами в силосный склад, из которого с помощью шнекового конвейера подается в бетоносмеситель. Вода добавляется в смесь из бака запаса воды, исходя из исходной влажности отсева. Нужное количество воды отмеряется с помощью счетчика.

Согласно технологии гиперпрессованного кирпича, после загрузки бетоносмесителя смесь в течение одной минуты перемешивается на сухую, далее добавляется вода, и смесь перемешивается еще в течение полутора минут. Влажность формовочной смеси должна составлять 7-8%. Готовая формовочная смесь выгружается из бетоносмесителя на ленточный конвейер, который подает ее в бункер пресса.

После прессования поддоны с кирпичом с помощью кран-балки подаются в камеры ТВО. Тепловлажностная обработка производится открытым паром, доставляемым из котельной, по режиму 1-6-1 60°С.

После пропаривания поддоны с кирпичом выгружаются из камеры кран-балкой и доставляются на пост выдержки, где кирпичи остывают и упаковываются в термоусадочную пленку.

После упаковки поддоны с готовыми кирпичами перемещаются вилочным погрузчиком на склад готовой продукции.

Результаты испытаний технологии гиперпрессованного кирпича

Для обеспечения объемов производства кирпича по технологии гиперпрессования необходимо применение тепло-влажностной обработки изделий. При сравнении 4-х режимов тепловлажностной обработки наиболее оптимальным оказался режим 1- 6-1 60°С. Для обеспечения требуемых прочностных характеристик кирпича и с точки зрения экономической целесообразности производства, наиболее оптимальным является состав с 10% процентным содержанием портландцемента, заформованный при удельном давлении прессования 60 МПа.

Таким образом, описанная выше технология производства гиперпрессованного кирпича является низкозатратной и конкурентоспособной в сравнении с другими способами производства аналогичных строительных материалов.

Если вы планируете купить оборудование для производства гиперпрессованного кирпича по цене производителя, то обращайтесь в офис нашей компании.

Формовочные машины для блоков и кирпичей

Пресс для производства блоков-1

Кирпич — это искусственный камень, произведенный из минеральных материалов, используемый в строительстве. Классическим материалом для производства кирпича является глина. Кирпич из глины известен с незапамятных времен. В основу технологии керамики заложена последовательность следующих процессов: добыча сырья, подготовка сырьевой массы, формование изделий, сушка и обжиг. Но время не стоит на месте, и современные технологии позволяют изготавливать кирпич не только из глины, и не только традиционным способом, что позволяет получать изделия с разными характеристиками, увеличить прочность, улучшить геометрию, расширить цветовую палитру или устойчивость к действию внешних агрессивных факторов.
Ниже кратко описаны основные методы производства кирпича.

Читайте так же:
Размер кирпича с учетом шва

1. Метод пластического формования
2. Метод полусухого прессования
3. Производство шамотного кирпича
4. Производство силикатного кирпича
5. Производство гиперпрессованного кирпича

Метод пластического формования

Способ производства кирпича пластическим формованием состоит из нескольких этапов:

  • Добыча сырья (глины)
  • Подготовка сырья. Глину увлажняют паром и интенсивно обрабатывают (это заменяет процесс вылеживания) до получения пластичной, удобно формируемой массы без крупных каменистых включений.
  • Формование кирпича-сырца. Глиняная лента нарезается автоматическим устройством на кирпич-сырец. Размер таких кирпичей несколько больше требуемого, так как в процессе последующей обработки глина дважды (при сушке и обжиге) претерпевает усадку, достигающую 10-15%.
  • Сушка. Важный и сложный этап производства кирпича. Простейший способ предохранить кирпич от растекания — сушить его медленно, то есть так, чтобы скорость испарения воды не превышала скорости ее миграции из внутренних слоев. По достижении влажности кирпича-сырца 6-8% его можно подавать на обжиг.
  • Обжиг. Для обжига используют печи различной конструкции. Это и старые кольцевые печи, в которые кирпич укладывают и вынимают вручную, и современные туннельные, где кирпич обжигается в процессе продвижения его по печи. Температура обжига зависит от состава сырьевой массы и обычно находится в пределах 950-1000°С. Необходимую температуру обжига следует строго выдерживать до окончания процесса обжига.

Методом пластического формования производят полнотелый и щелевой керамический кирпич, теплую керамику, клинкерный кирпич. Кирпич, изготовленный данным способом, отличается низким водопоглощением, как следствие, высокой морозостойкостью и долговечностью.

При производстве поризованного кирпича (теплой керамики) используют добавки, например, опилки, которые, выгорая в процессе обжига, образуют поры, понижающие его плотность приблизительно на 30% и повышающие теплоизоляционные свойства. Небольшой вес таких изделий позволяет снизить нагрузку на нижележащие конструкции, и дает возможность производить крупноформатные блоки

Клинкерный кирпич обжигается при более высокой температуре. Технология и качество сырья обеспечивают более плотную структуру, повышенную прочность, морозостойкость, долговечность, но повышает теплопроводность.

Метод полусухого прессования

Сырьем для кирпича, производимого таким способом, также служит глина, но в отличие от пластического формования глина увлажняется до 6-7%, затем измельчается в порошок, из которого на специальных прессах поштучно формуется кирпич-сырец.

Такой сырец не требует сушки. Его можно обжигать сразу после формования. Кирпич полусухого прессования имеет гладкие грани и значительно меньше дефектов, чем кирпич пластического формования, но, в то же время, он менее морозостоек, что сужает спектр его применения.

Производство шамотного кирпича

Шамотный кирпич изготавливают путем обжига спрессованного шамота — порошка из обожженной размолотой огнеупорной глины при температуре 1650°С. Шамот — зернистый материал, получаемый измельчением предварительно обожженной до температуры спекания глины. Его можно заменить измельченным браком керамических изделий.

Шамотный кирпич отличается высокой огнеупорностью, прочностью, устойчивостью к агрессивным средам, например, действию кислот и щелочей, не подвержен деформации.

Производство силикатного кирпича

При изготовлении силикатного кирпича не используется глина. Сырьевая смесь для производства силикатного кирпича содержит 90-95% песка, 5-10% молотой негашеной извести и некоторое количество воды.

Смесь тщательно перемешивается и выдерживается до полного гашения извести. После завершения этого процесса из смеси под большим давлением (15-20 МПа) прессуют кирпич, который направляют для твердения в автоклавы при давлении 0,9 МПа и температуре 175 °С. Кирпич твердеет за 8-14ч. Далее кирпич выдерживают 10-15 дней для карбонизации, в результате чего повышается его прочность и водостойкость.

Кирпич, полученный таким способом отличается ровными гранями с гладкой поверхностью, он не имеет тех дефектов, которые свойственны кирпичу, произведенному способом пластического формования, кроме того, силикатный кирпич отличается хорошей звукоизоляцией. Но он значительно тяжелее керамического кирпича, менее водо- и морозостоек, его теплопроводность выше, такой кирпич не может применяться в частях здания с влажным режимом: в санузлах, ванных комнатах, для кладки фундаментов, подвалов, цоколей.

Читайте так же:
Сколько весит пакет кирпича

Производство гиперпрессованного кирпича

Сырьем для изготовления гиперпрессованного кирпича служит смесь цемента, известняка (ракушечника), доломита и красителя. В качестве наполнителя также могут использоваться: кварцевый песок, отсевы доломита, мрамора, травертина, гранита и других пород.

Гиперпрессованный кирпич не требует обжига, технология изготовления включает в себя двустороннее прессование под очень высоким давлением (не менее 40 МПа) в специальных пресс-формах. После этого спрессованный кирпич должен пройти процедуру «созревания» в теплом помещении не менее 5 дней, в течение которых кирпич получает 60-70% своей конечной прочности.

Гиперпрессованный кирпич имеет гладкие грани и значительно меньше дефектов, чем кирпич пластиче

Технология процесса

Итак, как прессуют ПЭТ-бутылки? На первый взгляд ничего сложного здесь быть не может. Но на практике все же возникают некоторые трудности. Основная проблема – это закрытые крышками ёмкости. При сжимании воздуху просто некуда деться.

Если речь идет о крупном заводе с мощным прессовым оборудованием, то проблем нет. Усилие смыкания плит настолько велико, что бутылка просто разрывается.

Фото 6

Но если же предстоит работать на маломощном агрегате, то следует провести подготовку:

  1. Проткнуть ножом или острым предметом тару. Такая операция подходит для станков, которые имеют малую производительность и загружаются в ручную.
  2. Полностью удалить крышки с бутылок. Трудоемкий процесс. Актуален только при наличии большого количества дешевой рабочей силы. Некоторые переработчики при приемке сырья заведомо оговаривают наличие или отсутствие крышек на бутылках. Есть интересный ход – только частично открутить крышку, буквально на 2-3 оборота, для выхода воздуха.
  3. Установка дополнительного оборудования – перфоратора. Эта машина представляет из себя прокатные ролики, оборудованные шипами. При прохождении через них бутылка прокалывается в нескольких местах, через которые затем выходит воздух.

В кустарных цехах по сбору вторичного пластика рабочие перед загрузкой пресса дополнительно сжимают бутылки, наступив на них ногой. Так загрузка машины увеличивается, а на прессах с ручным управлением таких нехитрым способом можно повысить плотность упаковки отходов.

Приготовление сырья

В вопросе, какого качества будет сделан силикатный кирпич, важную роль играет стадия подготовки ингредиентов и смеси. К компонентам предъявляются такие требования:

  1. Кварцевый песок в основном используется в немолотом виде. Можно применять смесь из крупнозернистого и тонкомолотого песка. Содержание кремнезема в нем должно составлять более 69-72 %.
  2. Известь во многом определяет свойства готового изделия, а потому она должна быть высокого качества. Основное условие — она должна иметь способность к ускоренному гашению.
  3. Вода используется на всех стадиях производства: подготовка смеси, гашение извести, при формовке элементов и в процессе тепловой обработки. Она не должна иметь никаких примесей.

Приготовление смеси для формовки кирпича начинается с дозировки ингредиентов, которая должна строго соответствовать выбранной рецептуре. Известь может добавляться в количестве 6,5-9 % по объему. Чем выше качество извести, тем меньше ее потребность в составе. Вода добавляется после смешивания компонентов из расчета следующего расхода: испарение — 3-4 %, на гашение извести — 2,4-2,7 %, на увлажнение смеси — 6,5-7,5 %. Рецептура кирпича оговаривается техническими условиями, принятыми на данном предприятии.

Приготовление песчано-известкового раствора обеспечивается 2 основными способами:

  1. Барабанный способ. Используется известь после тонкого измельчения. Песок и тонкомолотая известь поступают в специальный бункер с барабаном для перемешивания ингредиентов. В этой же камере производится и гашение извести с добавлением воды. Завершает процесс барабанной подготовки тепловая обработка при вращении в герметичном объеме, которая осуществляется с помощью пара.
  2. Силосный способ. Подготовка смеси проводится в специальных емкостях цилиндрической формы, которые называются силосами. В них обеспечивается и гашение извести. Весь процесс приготовления сырья занимает 11,5-13 часов, после чего смесь увлажняется и направляется на формовку в пресс.

Где выучиться на прессовщика

У профессии прессовщика очень много различных направлений: прессовщик-вулканизаторщик, прессовщик стеновых панелей, прессовщик колесных пар и т.д.

Каждая разновидность пресса требует отдельной специализации. Поэтому в колледжах и техникумах рабочей направленности учат по-разному. Возможен также альтернативный вариант получения специальности прессовщика – курсы профессиональной переподготовки. Однако при этом желательно наличие смежной рабочей профессии и соответствующего опыта на производстве. Курсы переподготовки есть при крупных предприятиях, либо в частных учебных центрах.

Читайте так же:
Сколько весит квадратный метр кирпича

Профессия прессовщика не считается слишком сложной в освоении и не требует высокой квалификации, равно как и профильного образования. Нужно лишь желание работать и обучаться на практике.

Прессовщик обязанности

Источник фото pch.vector/freepik

Использование пресса позволяет в зависимости от его конфигурации выполнять различные виды работ:

  • Выдавливание жидкости.
  • Штамповка изделий.
  • Уплотнение веществ и формирование заданной формы.
  • Сгибания заготовок.

Прессы для выдавливания жидкости появились одними из самых первых. В первую очередь такое оборудование применяется в пищевой промышленности. В частности с его помощью давится сок из фруктов и ягод, бьется масло из оливок, подсолнуха и прочих культур. Механизм уплотняет вещество, из которого под давлением выделяется присутствующая внутри жидкость. Она стекает сквозь решетку дна или боков уплотнительной формы.

Pressy dlia vydavlivaniia zhidkosti

Прессы для штамповки изделий являются очень распространенным производственным оборудованием, позволяющим получать плоские и объемные предметы. Обычно штамповка подразумевает вырезание из плоской заготовки готовые изделия. Рабочая часть пресса создает давление по контуру предмета, отделяя его от общей болванки.

Прессы для штамповки работают по холодной или горячей технологии. Оборудование для холодного штампа делают несложные предметы, чаще всего вырезая их из листового металла, бумаги, пластика.

Более сложным оборудованием является горячий пресс. Он рассчитан на работу с нагретыми веществами, в частности раскаленным докрасна металлом. Станок не только обрезает края заготовки, но и уплотняет ее структуру, увеличивая физические характеристики. С помощью штамповочного оборудования выпускаются детали автомобилей, спецтехники. Штамповочные прессы также используются для изготовления плоских ювелирных изделий, посуды, клинков ножей, маникюрных принадлежностей и т.п.

Pressy dlia shtampovki izdelii

Прессы для уплотнения применяются для увеличения плотности различных веществ. Они создают большое механическое давление, меняющее молекулярную кристаллическую решетку вещества, или просто добиваются удаление пустот сыпучего сырья. Такое оборудование часто используется для изготовления стройматериалов: кирпич, кафель, керамогранит, тротуарная плитка. Прессы уплотняющего типа позволяют получать топливные брикеты, пищевые гранулы для откорма животных, медикаменты в таблетках и пр.

Pressy dlia uplotneniia

Прессы для сгибания заготовок представлены различными листогибами, трубогибами и прочими установками. Они позволяют сгибать заготовки под заданным углом. Также оборудование применяется для изготовления элементов фальцевой кровли, обшивки для автотранспорта, бортов прицепов, деталей корпуса бытовой техники и т.д.

Pressy dlia sgibaniia

Распространенные конструкции прессов

Существуют десятки эффективных механизмов, позволяющих создавать высокое механическое давление. Общим их качеством является работа на сжатие, но все они отличаются по способу реализации.

Наиболее распространенными механизмами прессов являются:
  • Винтовые.
  • Гидравлические.
  • Кривошипные.
  • Листогибочные.
  • Магнито-импульсные.

Все они отличаются по габаритам, скорости и удобству работы. В связи с этим в разных направлениях производства преобладают разные конструкции.

Винтовой пресс

Это один из более простых и распространенных механизмов бытового назначения. Его основным преимуществом выступает компактность и дешевизна изготовления. Он представляет собой четырехугольную раму со штоком с нарезанной резьбой. При вкручивании штока, его конец движется к основанию рамы, сжимая расположенные между ними предметы или вещества. По принципу работы механизм аналогичный тискам или винтовым струбцинам.

Винтовые прессы представлены ручными соковыжималками, вулканизаторами для ремонта шин, оборудованием для ремонта обуви, ручными трубогибами. При работе с винтовым прессом требуется применение мускульной силы. Чем большее давление нужно достичь, тем сложнее вращение винта. Главный недостаток прессов данного типа заключается в низкой производительности. После сжима требуется время на выкручивание винта обратно.

Vintovoi press

Пресс на гидравлике

Один из самых распространенных на производстве. Он позволяет быстро создавать большое давление. Конструкция может подразумевать ручной или электрический привод, поэтому используется в промышленном и бытовом направлении. Ранее гидравлические устройства назывались прессами Брама, в честь изобретателя.

Gidravlicheskii press

Простейшее устройство данного типа представляется собой 2 сообщающихся сосуда разного объема. Каждый из них оснащен поршнем и заполнен маслом. Согласно закону Паскаля создаваемое давление в неподвижной жидкости одинаково по всему ее объему. Таким образом, прикладывая минимальное усилие на вдавливание поршня с малой площадью в меньшем сосуде, можно получить выигрыш в силе на большом поршне. Усилие на выходе будет больше на уровень соотношения рабочей площади. То есть, силы действующие на поршни пропорциональны их площади. Давя на малый поршень с одной силой, можно получить давление на втором поршне в разы большее.

Читайте так же:
Толщина кирпича чтобы не промерзала

Простейшим аналогом пресса данной конструкции является автомобильный гидравлический домкрат. Данный механизм позволяет создавать давление в десятки и сотни тонн, при этом имеет достаточно малые габариты.

Кривошипные прессы

Установка данного типа имеет полное название кривошипно-ползунный механизм. Обычно используется для штамповки стальных заготовок. Усилие в механизме создается за счет преображения вращающегося усилия в поступательное движение ползуна.

Krivoshipnyi press

Пресс имеет шатун, обороты которого обеспечиваются вручную с помощью рукоятки или вала электромотора. С целью увеличения эффективности механизма шатун может приводиться в движение через редуктор. За один оборот шатуна ползун пресса делает одно полное движение вперед и возвращается обратно.

Уровень давления зависит от используемого в системе редуктора и номинальной мощности электропривода. Прессы данной конструкции в разы более быстрые, чем гидравлические и винтовые. Обычно они используются на крупных производствах для штамповки. Примером такого бытового механизма является колун для дров. Устройство последнего несколько упрощено. В колуне момент вращения электромотора передается на массивный маховик через приводной ремень, а ползун связанный с маховиком двигает колющее зубило вперед и обратно.

Несмотря на большую производительность выполнения работ, кривошипные прессы все же имеют ограниченное применение. Это связано со сложностью реализации механизма. позволяющего развивать большое давление. По силе сжатия их превосходит большинство гидравлических прессов. Для повышения давления кривошипного механизма требуется увеличивать его массу и габариты. В связи с этим такие прессы обычно используются в направлениях производства, где большое давление не требуется.

Листогибочные прессы
Пресс листогиб в простейшей реализации работает за счет мускульной силы человека. Он позволяет ровно сгибать тонкие листы металла. Однако устройство такого типа является малопроизводительным и требует больших физических усилий. В связи с этим механизм комбинируется с разными типами приводов:
  • Гидравлический.
  • Пневматический.
  • Электромеханический.
  • Механический.

Listogibochnyi press

Обычно листогибочные прессы не применяются на автоматических конвейерах. Они требуют точного позиционирования заготовки перед выполнением сгиба. Поэтому механизм всегда контролируется рабочим, который после выравнивания детали запускает механизм сгиба. Тот в свою очередь может деформировать заготовку за счет сжимания пуансона с матрицей, поворота или ротации нескольких валиков.

Магнитно-импульсные

Это высокоскоростной пресс, главной деталью механизма которого выступает генератор импульсного тока. Устройство требует подвода электропитания и является сугубо производственным оборудованием. При подаче питания на устройство, то создает сильное электромеханическое давление, обычно за счет возникновения магнитного поля и притяжения между подвижной и неподвижной частью механизма. При этом расположенные между ними заготовки поддаются давлению, меняющему их форму, плотность или влажность. Обычно устройства данного типа применяются для прессования различных порошков.

Magnitno-impulsnyi press

Магнитно-импульсные прессы способны создавать давления разными способами:
  • Электродинамическим.
  • Индукционным.
  • Ударным.

Устройства, работающие по электродинамическому методу, используют физическое явление отталкивания между противоположно направленными импульсами. Прессы данного типа ограничены пределом импульсного давления в 0,5 ГПа.

Индукционный метод прессования разработан специально для получения деталей со сложной поверхностью. Сдавливающее усилие в данном механизме обеспечивается за счет взаимодействия импульсного поля рабочего индуктора с магнитным полем токопроводящей части пресса. При этом данные силы напрямую не взаимодействуют со спрессованным порошком, а только сдавливают его путем механического контакта с матрицей.

Применение прессов изостатического прессования

Применение прессов изостатического прессования

Применение прессов изостатического прессования

Изостатическое прессование применяется для:

  • Обработки отливок. После проведения такого процесса уменьшается или полностью устраняется пористость изделий, удаляются газы из материала. Повышаются механические свойства – вязкость, прочность и другие.
  • Прессования порошковых материалов. Спекание заготовок происходит при определенных значениях давления и температуры, которые подбираются отдельно для каждого материала.
  • Диффузной сварки элементов. Во время процесса осуществляется соединение твердых деталей посредством их сжатия. Это становится возможным благодаря микропластическим деформациям на несколько процентов.
  • Модифицирования поверхности посредством применения реакционных газовых сред. На основании результатов изостатического прессования разрабатываются технологии азотирования, нитроцементации и цементации.

Такое оборудование применяется для формования керамических и композиционных материалов, при производстве режущих инструментов, протезов, в процессе утилизации отходов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector